ALGEBRA I

Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.
4-1. A maple tree is 6 yards tall and grows at the rate of 1 feet per year. An oak tree is 4 yards tall and grows at the rate of 2 feet per year. Compute the number of years after which the two trees are the same height.

4-2. Compute the values of x that satisfy the following equation:
$(2 x-1)^{2}+(3 x+2)^{2}=(5 x+1)^{2}$

DUSO Mathematics League 2015-2016

Contest \#4.

Calculators are not permitted on this contest.

Part II.

GEOMETRY

Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.
4-3. Timmy added $\sin 38^{\circ}+\cos 81^{\circ}$. Jimmy added $\sin A^{\circ}+\cos B^{\circ}$ and got the same answer. If $A \neq 38, B \neq 81$, and A and B are first quadrant angles, compute $A+B$.

4-4. To make a logo, Lenny colors in the rectangle with opposite vertices $(5,6)$ and $(-5,2)$ and also the circle with equation $x^{2}+y^{2}=16$. Note that the logo is symmetric with respect to the y-axis. Compute the total area colored.

DUSO Mathematics League 2015-2016

Contest \#4.
Calculators are not permitted on this contest.

Part III.
ALGEBRA II / ADVANCED TOPICS
Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.
4 - 5. In $\triangle B I G, B I=12, I G=8$, and $m \angle I=60^{\circ}$. Compute the perimeter of $\triangle B I G$.
4-6. Compute the value of x that solves the system of equations: $\left(\log _{5} 9\right) x+\left(\log _{7} 2\right) y=\log _{5} 27$ and $\left(\log _{2} 7\right) x-\left(\log _{3} 5\right) y=\log _{2} 49$

Author: George Reuter - coachreu@gmail.com - Reviewer: Michael Curry - currymath@gmail.com

T-1. A lattice point is a point whose coordinates are integers. How many lattice points satisfy $x^{2}+y^{2}<25$?

T-2. Many positive integers have 14 positive integer factors. If they were to be listed in increasing order, the second number in the list would be N. Compute N.

T-3. Compute all real values of x that solve $(\sqrt{x+3}-\sqrt{1-x})^{3}-(\sqrt{x+3}-\sqrt{1-x})^{2}+4(\sqrt{x+3}-\sqrt{1-x})=12$.

